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Abstract. We provide a comprehensive study on the planar (2D) orienta-
tional distributions of nematic polymers under an imposed shear flow of ar-
bitrary strength. We extend previous analysis for persistence of equilibria in
steady shear and for transitions to unsteady limit cycles, from closure models
[21] to the Doi-Hess 2D kinetic equation. A variation on the Boltzmann distri-
bution analysis of Constantin et al. [3, 4, 5] and others [8, 22, 23] for potential
flow is developed to solve for all persistent steady equilibria, and characterize
parameter boundaries where steady states cease to exist, which predicts the
transition to tumbling limit cycles.

1. Introduction. Macromolecular materials (for example, nematic liquid crys-
tal polymers (LCP)) exhibit large flexibility and can be easily processed into fibers
with high strength, or thin films [1, 6, 26]. The bulk properties of these materials
are closely related to the processing flows. So it is very important to understand
the dynamic behavior of the materials in the presence of flows.

The kinetic Doi-Hess theory [7, 17] has been a popular model for nematic LCPs.
In kinetic theory each nematogenic molecule is coarse grained as a rigid rod and the
ensemble is described by an orientational probability density function (pdf) which
evolves according to the Smoluchowski (or Fokker-Planck) equation. Theoretical
investigations have been carried out for pure nematic equilibria [3, 4, 5, 8, 22, 23,
29], extensional flow-induced equilibria [27], stable equilibria of dipolar ensembles
[19, 30], effect of high [24, 25, 28] and weak shear [31], and effect of coplanar magnetic
field [16]. Numerical simulations of the Smoluchowski equations can be found in
[2, 9, 10, 11, 12, 13, 14, 15, 18, 20]. The first 3-D simulations carried out by Larson
[20] showed shear-induced transitions and confirmed Marrucci and Maffettone’s 2-D
calculations [24, 25].
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In the 2-D case, it is well-known that in the absence of flow the isotropic-nematic
phase transition occurs at U = 2, where U is the normalized polymer concentration.
In the presence of an imposed weak shear there is a threshold (U0 ≈ 2.41144646) for
U : When U < U0, steady state solution exists; otherwise there is no steady state
and the orientational pdf is temporally periodic (“tumbling”) and can never reach
a steady state.

The goal of this work is to conduct a comprehensive study of the 2-D nematic
liquid crystal polymers under an arbitrary shear. In [21] monolayer films of liquid
crystal polymers have been modeled with a mesoscopic two-dimensional (2D) ana-
logue of the Doi-Hess kinetic model. The weak-shear steady and unsteady selection
criteria for 2D nematic polymers using various second-moment closures was de-
rived. A simple proof was given based on the Poincare-Bendixon Theorem to show
that limit cycles (“tumbling orbits”) exist beyond the parameter boundary for the
steady-unsteady transition. Finally, it was revealed that the shear-perturbed 2D
phase diagram is significantly robust to closure approximations than the 3D sys-
tem. Our approach here differs from [21] in that we use the kinetic Smoluchowski
equation instead of the Doi tensor model. There are two minor differences between
our work and [21]. 1) In [21], a bistable region (where there are two stable solu-
tions) was observed for the Doi closure tensor model. In our study using the full
Smoluchowski equation there is no bistable region. Note that the bistable region
in [21] is extremely small and it is difficult to pinpoint what small differences be-
tween the full Smoluchowski model and closure-based tensor models might cause
this small bistable region. 2) In [21], Bogdanov-Takens bifurcation was observed
whereas there is no Bogdanov-Takens bifurcation in our study. Again note that in
[21] the Bogdanov-Takens bifurcation occurs in a very narrow region in the phase
diagram. Our results are in general consistent with those in [21] in several aspects:
1) Both models identify critical values of polymer concentration, beyond which there
is no steady state; 2) Both models yield the fold structure in the phase diagram.
However, a detailed fold structure is resolved in this work. Specifically, the fold
is not a kink, rather it is a smooth turn with large curvature. Furthermore, we
find that fold structure in the phase diagram (the plot of order parameter versus
U) exits for Pe < 0.746. For Pe > 0.746, the fold structure disappears. At the
critical value of Pe ≈ 0.746, the boundary separating the steady state region and
the tumbing region in the Pe − U plane appears to have a singularity. In [21] it
was mentioned that unstable state can be further classified as tumbling or wagging.
Tensor models were originally motivated by the fact that in the Doi-Hess kinetic
model with the Maier-Saupe potential, an equilibrium state is completely specified
by the orientation tensor. As a result, tensor models can provide good approxima-
tions at equilibrium or near equilibrium. In 2-D tensor models the system state
is represented by the orientation direction and the order parameter. Thus, it is
natural to try to classify time-periodic unsteady state as tumbling or wagging. If
the director rotates continuously in one direction, we may say it is tumbling; if the
director moves back and forth in a certain range, we may say it is wagging. Even in
the tensor models, such a classification may be problematic since the director angle
is undefined at the isotropic state. If the time-periodic evolution ever goes through
the isotropic state, such a classification may be vague. It is worthwhile to note that
“tumbling” refers to the tumbling of the orientation probability density. As for
individual polymer rods, under a shear they are always tumbling in the direction
of shear even if the orientation pdf is in a steady state. With a full Smoluchowski
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equation (i.e. the Doi-Hess model),we find that under a weak shear the orientation
probability density function (pdf) is a traveling wave with the location-dependent
velocity, that is, the shape of the orientation pdf is maintained while the whole
function may shift in the orientation dimension. So in the case of weak shear,
the classification of tumbling and wagging makes perfect sense. But in the case
of weak shear, it was found that there is only tumbling and there is no wagging
[31]. As Pe gets larger (i.e. the shear getting stronger), the unsteady evolution of
the orientation pdf becomes more complicated. As the peak of the pdf moves, the
shape of the pdf changes dramatically for large Pe. We feel that the classification
of tumbling and wagging is no longer adequate for providing a good picture of the
time-evolution of the orientation pdf. We will pursue a comprehensive classification
of the pdf in the future work. Here we shall refer the time-periodic unsteady state
simply as tumbling.

In this paper we present and discuss phase diagrams for a very wide range of
the Peclet number. For small Peclet number, the result of the current analyt-
ical/numerical study confirms the conclusions of the previous asymptotic study
[31]: When the concentration parameter U is greater than a critical value U0

(≈ 2.41144646), there is no stable steady state; when U is smaller than U0, there is
one stable branch of steady state; the stable branch and an unstable branch form a
fold and are connected at U0. The current study resolves the details of the transition
from stability to instability along the phase diagram: the transition occurs around
the folding point of the phase curve. As the Peclet number increases, the stable
branch and the unstable branch of the fold are peeled off from each other and are
separated. For Pe > 0.746, the fold disappears completely, that is, the phase curve
no longer has a folding point. Furthermore, for Pe > 0.746, there is only one steady
state (stable or unstable) for each value of U , and the transition from stability to
instability occurs at a Hopf bifurcation point.

2. Two-Dimensional formulation. We start with reviewing the mathemat-
ical formulation of the Doi-Hess kinetic theory for two-dimensional homogeneous
flows of rigid rodlike molecules immersed in a viscous solvent subject to an imposed
flow field [7, 17]. The orientation of a polymer rod is described by an angle θ and
the orientational direction of each polymer rod is denoted by u = (cos θ, sin θ).

We consider the steady state solution of the Smoluchowski equation in the form
[7]

∂ρ

∂t
=

∂

∂θ

[

(−f + ψ
′

(θ))ρ +
∂

∂θ
ρ

]

, (1)

where ρ(θ, t) is the orientational probability density function of the ensemble, ψ(θ)
is a periodic function with period π, and f is a constant torque. In the case of
nematic polymers under shear, ψ(θ) contains both the Maier-Saupe interaction and
the effect of the elongational component of the shear whereas f is caused by the
rotational component of the shear. The steady state solution satisfies

(−f + ψ
′

(θ))ρ +
∂

∂θ
ρ = −J, (2)

where J is the steady state probability flux. Multiplying (2) by the integrating
factor exp[−fθ + ψ(θ)], we have

∂

∂θ
[exp(−fθ + ψ(θ))ρ] = −J exp [−f θ + ψ(θ)] . (3)
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Integrating from θ to θ + π yields

[exp(−fπ) − 1] exp[−fθ + ψ(θ)]ρ(θ) = −J
∫ θ+π

θ

exp[−f θ̄ + ψ(θ̄)]dθ̄. (4)

Solving for ρ(θ) gives

ρ(θ) =
J

1 − exp(−fπ)
exp[−ψ(θ)]

∫ π

0

exp[−f θ̄ + ψ(θ + θ̄)]dθ̄. (5)

The value of the probability flux J is determined from the condition
∫ π

0

ρ(θ)dθ = 1. (6)

Note that once we know f and ψ(θ), the probability density ρ(θ) is conveniently
determined from (5). An efficient method of implementing (5) based on the Fast
Fourier Transform (FFT) is discussed in Appendix A.

When an external shear flow with arbitrary strength is imposed, the Smolu-
chowski equation (1) can be written as

∂ρ

∂t
=

∂

∂θ

[

(−Pe
2

+ V
′

SH(θ) + V
′

MS(θ))ρ+
∂

∂θ
ρ

]

, (7)

where Pe = γ/Dr is the Peclet number, a nondimensional parameter measuring
the relative strength of viscosity (γ) and rotational diffusivity (Dr). In equation
(7), VSH(θ) is the periodic part of the potential induced by the imposed shear,

VSH(θ) =
Pe

4
sin 2θ, (8)

and VMS(θ) is the Maier-Saupe short-range interaction potential,

VMS(θ) = −U〈cos 2(θ − α)〉 cos 2(θ − α), (9)

where the brackets 〈·〉 denote the ensemble average with respect to the probability
density function ρ(θ) and the angle α is selected such that

〈sin 2(θ − α)〉 = 0. (10)

Let r ≡ U〈cos 2(θ−α)〉. With the introduction of r, the Maier-Saupe potential can
be expressed as

VMS(θ) = −r cos 2(θ − α) (11)

and the order parameter can be written as

〈cos 2(θ − α)〉 =
r

U
. (12)

Note that equation (1) reduces to (7) if we use the substitutions f = Pe

2 and

ψ(θ) =
Pe

4
sin 2θ − r cos 2(θ − α)

=
Pe

4
cos 2α sin 2(θ − α) − (r − Pe

4
sin 2α) cos 2(θ − α)

=
Pe

4
cos 2α sin 2(θ − α) − q cos 2(θ − α) (13)

where

q = r − Pe

4
sin 2α. (14)

It is clear that once the values of Pe, r and α are given, the total potential is
completely specified and the steady state probability density (if a steady state exists)
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is given by (5). The existence of steady state solution of the Smoluchowski equation
(7) depends on the existence of solution of the following nonlinear system:

F1(α, q, Pe) ≡ 〈sin 2(θ − α)〉 = 0,

F2(α, q, Pe) ≡ 〈cos 2(θ − α)〉 =
r

U
, (15)

where the pdf used in averaging is the one given in (5). In the nonlinear system
(15), Pe and U are parameters whereas r and α are unknowns. Alternatively, q and
α can be used as unknowns where q and r are related by (14).

The goal of this paper is to study the existence and stability of steady solutions
of the nonlinear system (15) for Pe > 0 and U > 0. It is worth noticing that with
the introduction of r, the pdf given in (5) is independent of U . So we can avoid the
parameter U in our analysis until the very end. These are the big advantage and
mathematical convenience of dealing with r instead of U .

3. Existence of steady state solutions. In this section we will study (both
analytically and numerically) the existence of solutions of the nonlinear system (15)
with 0 < U < ∞ for a given value of Pe. It is important to keep in mind that the
pdf in (5) is independent of U with the use of r.

Since sin 2θ is a periodic function with period π, we can restrict the range of α
to [−π

4 ,
3π

4 ]. Also note that sin 2θ satisfies

sin 2
[

θ − (α+
π

2
)
]

= sin [2(θ − α) + π]

= − sin 2(θ − α),

cos 2
[

θ − (α+
π

2
)
]

= cos [2(θ − α) + π]

= − cos 2(θ − α).

That is, the polymer orientation distribution with order parameter 〈cos 2(θ − α)〉
and phase angle α is identical to the polymer orientation distribution with order
parameter −〈cos 2(θ−α)〉 and phase angle α+π/2. So by allowing r ≡ U〈cos 2(θ−
α)〉 to be both positive and negative, we can further restrict the range of α to
[−π

4 ,
π

4 ].
We first make a change of variable θnew = θ − α. For simplicity, we still denote

the new variable θnew by θ and the corresponding pdf and potential for the new
variable θnew by ρ(θ) and ψ(θ), respectively. In our notation, (15) becomes

F1(α, q, Pe) ≡ 〈sin 2θ〉 = 0, (16)

F2(α, q, Pe) ≡ 〈cos 2θ〉 =
r

U
, (17)

where the new pdf ρ(θ) and the new potential ψ(θ) are

ρ(θ) ∝ exp[−ψ(θ)]

∫ π

0

exp[−Pe
4
θ̄ + ψ(θ + θ̄)]dθ̄, (18)

ψ(θ) =
Pe

4
cos 2α sin 2θ − q cos 2θ. (19)

For a given value of Pe, the function F1(α, q, Pe) depends on only q and α. Our
extensive numerical calculations suggest that for any value of Pe > 0 and any value
of α ∈ [−π

4 ,
π

4 ], there exists one and only one value of q such that F1(α, q, Pe) = 0.
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A rigorous mathematical proof of the uniqueness is still open. In Appendix B, we
prove the existence by showing the asymptotic behaviors of F1(α, q, Pe):

F1(α, q, Pe) =











Pe(1 − cos 2α)
1

4q
+ · · · > 0, if cos 2α < 1,

P e

8q2
+ · · · > 0, if cos 2α = 1,

as q → +∞,

F1(α, q, Pe) = Pe(1 + cos 2α)
1

4q
+ · · · < 0, as q → −∞.

Since F1(α, q, Pe) is continuous and it has opposite sign at positive and negative
infinity, there exists a point such that it is zero. In other words, equation (16)
can always be satisfied and for a fixed value of Pe it defines uniquely a function
q(α) such that F1(α, q(α), P e) = 0. Notice that in (16)–(19), α appears only in the
potential ψ(θ) in the form of cos 2α. Since cos 2α is an even function with respect
to α, the whole problem (16)-(19) is even with respect to α. Consequently, q(α) is
an even function of α.

Now, in potential ψ(θ) given in (19), we replace q by function q(α). It follows
that for a fixed value of Pe, the pdf ρ(θ) given in (18) is now a function of α only
for α ∈ [−π

4 ,
π

4 ].
For mathematical convenience, let us introduce several functions as follows:

r(α) ≡ q(α) +
Pe

4
sin 2α,

s(α) ≡ F2(α, q(α), P e),

w0(α) ≡ q(α)

s(α)
,

w(α) ≡ r(α)

s(α)
= w0(α) +

Pe

4
· sin 2α

s(α)
.

As we discussed earlier, the function s(α) is also an even function of α. As we will
see later, the nonlinear system (16) and (17) governing the steady state solutions
can be conveniently described by these introduced functions. Furthermore, the non-
linear system (16) and (17) in terms of these introduced functions can be simplified
significantly.

We plot functions q(α), s(α), w0(α) and w(α) for several values of Pe, respec-
tively in Figures 1–2.

It is clear from Figures 1-2 that function q(α), together with functions s(α)
and w0(α) are not sensitive to the value of Pe. In contrast, the function w(α)
is highly dependent on Pe since the second term in the definition of w(α) has
a coefficient Pe

4 . Figure 2 shows that for small values of Pe, the function w(α)
initially increases to a local maximum; after the local maximum w(α) decreases to
a local minimum; after the local mininum w(α) starts to increase again. As the
value of Pe increases, the locations of the maximum and minimum get closer. In
other words, as the value of Pe increases, the zigzag part of w(α) shrinks. At a
critical value of Pec = 0.746027, both the value and the location of the maximum
coincide with those of the minimum, and the zigzag part of w(α) disappears. For
Pe > Pec, function w(α) is monotonically increasing for α ∈ [−π

4 ,
π

4 ].
Note that if we replace q in equation (17) by q(α) (and replace r by r(α)), then

equation (17) is an equation of α only where Pe and U are treated as parameters.
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Figure 1. Functions q(α), s(α) and w0(α) for various values of Pe.
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Figure 2. Function w(α) for various values of Pe. The right panel
is a detailed view of the left panel.

In terms of function w(α), equation (17) becomes

w(α, Pe) = U. (20)

Here we write it as w(α, Pe) to show explicitly its dependence on Pe.
The phase diagram (steady states as functions of U or Pe or both) can be ob-

tained by solving equation (20). As we discussed above, for Pe < Pec, equation
(20) has one solution for small values of U ; it has three solutions for U in an in-
termediate range; and it has one solution for large U . For Pe > Pec, the zigzag
part of function w(α) disappears. As a result, for Pe > Pec, equation (20) has one
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solution for any value of U > 0. Figure 3 shows the phase diagram (steady state as
a function of U) for Pe = 0.01, corresponding to the case of weak shear. As shown
in the figure, a cusp (actually it is smooth, see the insert in Figure 3) separates the
diagram into two branches. As we argued in [31], the branch shown in solid line,
which corresponds to the stable branch in the case of no shear (Pe = 0), is stable.
The branch shown in dashed line is unstable [31]. The lower part of the dashed
line branch corresponds to the unstable isotropic branch for U > 2 in the case of
no shear (Pe = 0). The stability of the upper part of the dashed line branch was
analyzed in our multi-scale asymptotic study [31]. In the case of weak shear (i.e.
Pe << 1), a nematic equilibrium will keep its shape. But under the influence of
weak shear (Pe << 1), its phase angle α will change with respect to the slow time
scale T1 = Pe · t. The evolution of the phase angle α is governed by the differential
equation [31]

dα

dT1
= c1(sin

2 α+ c2), (21)

where c1 > 0. For −1 < c2 < 0, the phase angle will converge to a steady state.
The stability of a steady state phase angle α0 is determined by the derivative of
sin2 α+ c2 at α0:

d

dα
(sin2 α+ c2) = 2 sinα cosα = sin 2α.

1.8 2 2.2 2.4 2.6 2.8

0

0.2

0.4

0.6

U

s

Pe = 0.01

Figure 3. Phase diagram for Pe = 0.01. The insert is a magnified
view of the cusp, which separates the phase diagram into two
branches.

If sin 2α0 > 0, then α0 is unstable. If sin 2α0 < 0, then α0 is stable. As shown
in Figure 4, for any −1 < c2 < 0, there are two steady state phase angles in (0, π).
The one in (π/2, π) is stable while the one in (0, π/2) is unstable. The upper part of
the dashed line branch in Figure 3 corresponds to the unstable steady state phase
angle, and thus is unstable. In the asymptotic study of weak shear (Pe << 1)
both the stable branch and the upper part of the unstable branch cease to exist for
U > Uc = 2.41144646. For U > Uc, there is no steady state solution. Instead, there
is a tumbling solution. In the analytical/numerical study here, the stable branch
and the upper part of the unstable branch are connected to each other at the cusp
(see the insert in Figure 3).
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Figure 4. Stable and unstable steady state phase angles.

In Figure 5 we plot the phase diagram (steady state as a function of U) for several
values of Pe.
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Figure 5. Left panel: Phase diagram for small-to-intermediate
values of Pe. Right panel: Phase diagram for large values of Pe.

As shown in Figure 5, the cusp, which separates the phase diagram into two
branches, is less and less well defined as the value of Pe increases. For Pe > Pec,
the cusp disappears completely. Here it is important to point out that the system
is not driven by a potential field because the effect caused by the shear flow is not a
potential field. As a consequnce, a steady state branch may change its stability at
any point even when it remains isolated. In contract, when a system is driven by
a potential field, a steady state branch may change its stability only if some other
branch bifurcates from it (or a fold occurs) [8].

4. Stability study. For a given value of Pe, a steady state solution is com-
pletely specified by the value of α. Once the value of α is known, U and the order
parameter s are given by

U = w(α), s = s(α).

The probability density function (pdf) is calculated as follows:

ρ(θ) ∝ exp[−ψ(θ)]

∫ π

0

exp

[

−Pe
2
θ̄ + ψ(θ + θ̄)

]

dθ̄,



506 HONGYUN WANG, HONG ZHOU AND M. GREGORY FOREST

where the potential ψ(θ) is

ψ(θ) =
Pe

4
cos 2α sin 2θ − q(α) cos 2θ.

Since the pdf satisfies
∫ π

0 ρ(θ)dθ = 1 and is periodic with period π, it has the Fourier
series expansion of the form

ρ(θ) =
2

π

[

1

2
+

M
∑

k=1

(a
(0)
k

cos 2kθ + b
(0)
k

sin 2kθ)

]

, (22)

where b
(0)
1 = 0. We consider perturbations of the form

∆ρ(θ, t) =
2

π

M
∑

k=1

[ak(t) cos 2kθ + bk(t) sin 2kθ] . (23)

The Maier-Saupe interaction potential induced by the perturbed pdf ρ̄(θ, t) ≡ ρ(θ)+
ε∆ρ(θ, t) is

V̄MS(θ) = −U [〈cos 2θ〉 cos 2θ + 〈sin 2θ〉 sin 2θ] ,

where

〈cos 2θ〉 =

∫ π

0

cos 2θ [ρ(θ) + ε∆ρ(θ, t)] dθ

= a
(0)
1 + ε a1(t),

〈sin 2θ〉 =

∫ π

0

sin 2θ [ρ(θ) + ε∆ρ(θ, t)] dθ

= ε b1(t).

Substituting into the Maier-Saupe potential yields

V̄MS(θ) = −Ua(0)
1 cos 2θ − εU [a1(t) cos 2θ + b1(t) sin 2θ]

= VMS(θ) + ε∆VMS(θ),

where VMS(θ) = −Ua(0)
1 cos 2θ is the unperturbed Maier-Saupe interaction po-

tential and ∆VMS(θ) = −U [a1(t) cos 2θ + b1(t) sin 2θ] is the perturbation to the
Maier-Saupe potential. The perturbed pdf satisfies

∂(ρ+ ε∆ρ)

∂t
=

∂

∂θ

[(

−Pe
2

+
Pe

4
V

′

SH(θ) + V
′

MS(θ)

+ ε∆V
′

MS(θ)
)

(ρ+ ε∆ρ) +
∂

∂θ
(ρ+ ε∆ρ)

]

.

Thus, ∆ρ(θ, t) satisfies the linearized equation

∂∆ρ

∂t
=

∂

∂θ

[(

−Pe
2

+
Pe

4
V

′

SH(θ) + V
′

MS(θ)

)

∆ρ+ ∆V
′

MS(θ)ρ(θ) +
∂∆ρ

∂θ

]

, (24)

where

− Pe

2
+
Pe

4
V

′

SH(θ) + V
′

MS(θ) = −Pe
2

+
Pe

2
cos 2α cos 2θ + 2q(α) sin 2θ,(25)

∆V
′

MS(θ) = 2U [a1(t) sin 2θ − b1(t) cos 2θ]. (26)



SHEARED NEMATIC LIQUID CRYSTAL POLYMER MONOLAYERS 507

To further evaluate the terms in (24), we appeal to (23) and arrive at

cos 2θ · ∆ρ = cos 2θ · 2

π

M
∑

k=1

[ak(t) cos 2kθ + bk(t) sin 2kθ]

=
2

π

M
∑

k=1

(

ak(t)
1

2
[cos 2(k + 1)θ + cos 2(k − 1)θ]

+ bk(t)
1

2
[sin 2(k + 1)θ + sin 2(k − 1)θ]

)

=
1

π
[a1(t) + a2(t) cos 2θ + b2(t) sin 2θ]

+
1

π

M
∑

k=2

([ak−1(t) + ak+1(t)] cos 2kθ + [bk−1(t) + bk+1(t)] sin 2kθ) .

Similarly, we have

sin 2θ · ∆ρ =
1

π
[b1(t) + b2(t) cos 2θ − a2(t) sin 2θ]

+
1

π

M
∑

k=2

([bk+1(t) − bk−1(t)] cos 2kθ + [ak−1(t) − ak+1(t)] sin 2kθ) .

Using the expansion (22) and noting that b
(0)
1 = 0, we find after some straightfor-

ward manipulations that

sin 2θ · ρ = sin 2θ · 2

π

[

1

2
+

M
∑

k=1

(a
(0)
k

cos 2kθ + b
(0)
k

sin 2kθ)

]

=
1

π

[

b
(0)
2 cos 2θ + (1 − a

(0)
2 ) sin 2θ

]

+
1

π

M
∑

k=2

[

(b
(0)
k+1 − b

(0)
k−1) cos 2kθ + (a

(0)
k−1 − a

(0)
k+1) sin 2kθ

]

,

and

cos 2θ · ρ =
1

π

[

a
(0)
1 + (1 + a

(0)
2 ) cos 2θ + b

(0)
2 sin 2θ

]

+
1

π

M
∑

k=2

[

(a
(0)
k−1 + a

(0)
k+1) cos 2kθ + (b

(0)
k−1 + b

(0)
k+1) sin 2kθ

]

.
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From (22), (23), (25) and (26), we express quantity

I ≡
[

−Pe

2 + Pe

4 V
′

SH
(θ) + V

′

MS
(θ)

]

∆ρ as

I =

[

−Pe
2

+
Pe

2
cos 2α cos 2θ + 2q(α) sin 2θ

]

∆ρ

=
1

π

[

−Pe
2

+
Pe

2
cos 2α · a1(t) + 2q(α) · b1(t)

]

+
1

π

[

−Pe · a1(t) +
Pe

2
cos 2α · a2(t) + 2q(α) · b2(t)

]

cos 2θ

+
1

π

[

−Pe · b1(t) +
Pe

2
cos 2α · b2(t) − 2q(α) · a2(t)

]

sin 2θ

+
1

π

M
∑

k=2

(

−Pe · ak(t) +
Pe

2
cos 2α · [ak−1(t) + ak+1(t)]

+ 2q(α) · [bk+1(t) − bk−1(t)]) cos 2kθ

+
1

π

M
∑

k=2

(

−Pe · bk(t) +
Pe

2
cos 2α · [bk−1(t) + bk+1(t)]

+ 2q(α) · [ak−1(t) − ak+1(t)]) sin 2kθ,

and

∆V
′

MS(θ)ρ(θ) = 2U [a1(t) sin 2θ − b1(t) cos 2θ]ρ(θ)

=
2U

π

[

−b1(t) · a(0)
1

]

+
2U

π

[

a1(t) · b(0)2 − b1(t) · (1 + a
(0)
2 )

]

cos 2θ

+
2U

π

[

a1(t) · (1 − a
(0)
2 ) − b1(t) · b(0)2

]

sin 2θ

+
2U

π

M
∑

k=2

[

a1(t) · (b(0)k+1 − b
(0)
k−1) − b1(t) · (a(0)

k−1 + a
(0)
k+1)

]

cos 2kθ

+
2U

π

M
∑

k=2

[

a1(t) · (a(0)
k−1 − a

(0)
k+1) − b1(t) · (b(0)k−1 + b

(0)
k+1)

]

sin 2kθ.

Let

q1 =
Pe

2
cos 2θ, q2 = 2q(α), q3 = 2U.
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Putting all these in the right hand side of (24) and simplifying, we get

RHS =
2

π

[

Pe · b1(t) + q1b2(t) − q2a2(t) − q3[a
(0)
2 − a

(0)
0 ]a1(t)

−q3[b(0)0 + b
(0)
2 ]b1(t) − 4a1(t)

]

cos 2θ

+
2

π

[

Pe · a1(t) − q1a2(t) − q2b2(t) − q3[b
(0)
2 − b

(0)
0 ]a1(t)

+q3[a
(0)
0 + a

(0)
2 ]b1(t) − 4b1(t)

]

sin 2θ

+
2

π

M
∑

k=2

k [−Pe · bk(t) + q1[bk−1(t) + bk+1(t)] − q2[ak+1(t) − ak−1(t)]

−q3[a(0)
k+1 − a

(0)
k−1] · a1(t) − q3[b

(0)
k−1 + b

(0)
k+1] · b1(t) − 4kak(t)

]

cos 2kθ

+
2

π

M
∑

k=2

k [Pe · ak(t) − q1[ak−1(t) + ak+1(t)] − q2[bk+1(t) − bk−1(t)]

−q3[b(0)k+1 − b
(0)
k−1] · a1(t) + q3[a

(0)
k−1 + a

(0)
k+1] · b1(t)

−4kbk(t)] sin 2kθ. (27)

Hence, from (24), it follows that the Fourier coefficients of the perturbation satisfy

da1(t)

dt
= −Pe · b1(t) + q1b2(t) − q2a2(t) − q3[a

(0)
2 − a

(0)
0 ]a1(t)

−q3[b(0)0 + b
(0)
2 ]b1(t) − 4a1(t),

db1(t)

dt
= Pe · a1(t) − q1a2(t) − q2b2(t) − q3[b

(0)
2 − b

(0)
0 ]a1(t)

+q3[a
(0)
0 + a

(0)
2 ]b1(t) − 4b1(t),

dak(t)

dt
= k [−Pe · bk(t) + q1[bk−1(t) + bk+1(t)] − q2[ak+1(t) − ak−1(t)]

−q3[a(0)
k+1 − a

(0)
k−1]a1(t) − q3[b

(0)
k−1 + b

(0)
k+1]b1(t) − 4kak(t)

]

,

dbk(t)

dt
= k [Pe · ak(t) − q1[ak−1(t) + ak+1(t)] − q2[bk+1(t) − bk−1(t)]

−q3[b(0)k+1 − b
(0)
k−1]a1(t) + q3[a

(0)
k−1 + a

(0)
k+1]b1(t) − 4kbk(t)

]

,

where we have set
a
(0)
0 = 1, b

(0)
0 = 0.

If we collect all of the Fourier coefficients of ∆ρ(θ, t) into a vector

u(t) = [a1(t), b1(t), a2(t), b2(t), · · · , aM (t), bM (t)]T ,
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then the above equations can be cast in a compact form

du(t)

dt
= A[ρ(θ)] · u(t), (28)

where we have used the notation A[ρ(θ)] to show explicitly that the matrix A
depends on the unperturbed steady state ρ(θ). If all of the eigenvalues of A have
negative real parts, then the perturbation decays to zero as time goes to infinity
and the steady state ρ(θ) is linearly stable; if at least one of the eigenvalues of A
has a positive real part, then the steady state ρ(θ) is unstable. We use the Matlab
package to solve this eigenvalue problem to determine the stability.

5. Numerical results. Referring to Figure 3, we showed the phase diagram
with stability/instability indicated for the case of Pe = 0.01. In the figure, the solid
line represents the stable branch and the dashed line represents the unstable branch.
The numerical stability result is consistent with that of the asymptotic analysis.
Numerical stability analysis shows that the stable and the unstable branches are
connected at the folding point of the phase curve where the phase curve is vertical
(i.e., the point where ∂s/∂U = ∞). The transition point from the stable branch to
the unstable branch can only be calculated from the numerical stability analysis.
The asymptotic analysis is not capable of resolving this detail. Figure 6 shows the
phase diagram with stability/instability indicated for the case of Pe = 0.1. The
solid line represents the stable branch and the dashed line represents the unstable
branch. Numerical stability analysis shows that the transition point from the stable
branch to the unstable branch is the folding point of the phase curve where the phase
curve is vertical (i.e. the point where ∂s/∂U = ∞).

1.8 2 2.2 2.4 2.6 2.8

0

0.2

0.4

0.6

U

s

Pe = 0.1

Figure 6. Phase diagram for Pe = 0.1.

In Figure 7 we show the phase diagrams with stability/instability indicated for
several intermediate values of Pe. The solid line represents the stable branch and
the dashed line represents the unstable branch. Numerical stability analysis shows
that the transition from the stable branch to the unstable branch is the folding
point of the phase curve if such a folding point exists. Note that this qualitative
behavior based on the closure models has been observed in [21] even though they
differ quantatively.



SHEARED NEMATIC LIQUID CRYSTAL POLYMER MONOLAYERS 511

1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

U

s
Pe = 2

Pe = 0.746

Pe = 0.3

Figure 7. Phase diagram for intermediate values of Pe.

For Pe < 0.746, such a folding point exists. For Pe > 0.746, there is no such
folding point. For Pe > 0.746, the transition from the stable branch to the unstable
branch occurs at a point beyond the maximum.

0 4 8 12 16 20

0

0.3

0.6

0.9

U

s
Pe = 40

Pe = 20

Pe = 10

Pe = 5

Figure 8. Phase diagram for large values of Pe.

Figure 8 depicts the phase diagram with stability/instability indicated for sev-
eral large values of Pe. The solid line corresponds to the stable branch whereas
the dashed line corresponds to the unstable branch. Numerical stability analysis
indicates that the transition from the stable branch to the unstable branch occurs
at a point beyond the maximum. Furthermore, as the value of Pe increases, the
value (U) of the transition point increases.

Figure 9 describes the region of stable steady state (shaded) and the region of
tumbling solution in the (U,Pe)-plane. This figure is also inherent in [21], where
the locus of the Hopf bifurcation was shown. Here, it is captured from the kinetic
theory.
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24

32

40

U
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2.4 2.45 2.5 2.55
0

0.3

0.6

0.9

U

Pe

Figure 9. Region of stable steady state solution (shaded) and the
region of tumbling solution. Left panel: overall view; Right panel:
detailed view for small Pe.

6. Conclusions. We have semi-analytically investigated all steady state solu-
tions and their stability for planar 2D nematic polymers under an imposed shear
flow with arbitrary strength. We have confirmed the mesoscopic closure models of
Lee et al. [21], extending their analysis and numerical studies to the Smoluchowski
equation for the orientational probability distribution. A detailed phase diagram is
given, consisting of all stable steady states versus the normalized concentration U
and normalized shear rate or Peclet number Pe. Special attention has been given to
the locus of bifurcations in the phase diagram where stable steady states no longer
exist. These bifurcations are shown to consist of a fold among stable and unstable
branches up to some critical Pe, after which the fold disappears and is replaced by
Hopf bifurcation. Extension of the current work to 3-D model will be much more
challenging mathematically.
Appendix A An efficient method for calculating

∫ π

0 exp
[

−f θ̄ + ψ(θ + θ̄)
]

dθ̄

Using the Fourier series expansion of exp(ψ(θ)) =
∑

∞

k=−∞
ck exp(ik2θ), we ob-

tain
∫ π

0

exp
[

−f θ̄ + ψ(θ + θ̄)
]

dθ̄ =

∞
∑

k=−∞

ck

∫ π

0

exp
[

−f θ̄ + ik2(θ+ θ̄)
]

dθ̄

=
∞
∑

k=−∞

ck

[
∫ π

0

exp
[

(−f + ik2)θ̄
]

dθ̄

]

exp(ik2θ)

=

∞
∑

k=−∞

ck
1 − exp(−fπ)

f − ik2
exp(ik2θ)

=

∞
∑

k=−∞

dk exp(ik2θ),

where

dk = ck
1 − exp(−fπ)

f − ik2
. (29)

The numerical procedure for calculating
∫ π

0 exp
[

−f θ̄+ ψ(θ + θ̄)
]

dθ̄ is as follows.
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• Apply FFT on ψ(θ) to calculate ck.

• Calculate dk = ck
1 − exp(−fπ)

f − ik2
.

• Apply IFFT on dk to compute
∫ π

0
exp

[

−f θ̄ + ψ(θ + θ̄)
]

dθ̄.

Appendix B Existence of solution of F1(α, q, Pe) ≡ 〈sin 2θ〉 = 0
We consider several cases.

Case 1: q → +∞
Since the pdf ρ(θ) given in (18) is periodic with period π, we can consider any

interval of length π. Without loss of generality, let us select the interval [−π

2 ,
π

2 ].
We have

F1(α, q, Pe) ≡ 〈sin 2θ〉

=
1

Z

∫ π

2

−
π

2

∫ π

0

sin 2θ exp
[

−π
2
θ̄ + ψ(θ + θ̄) − ψ(θ)

]

dθ̄dθ

=
1

Z

∫ π

2

−
π

2

∫ π

0

sin 2θ exp

[

−Pe
2
θ̄ +

Pe

4
cos 2α[sin 2(θ + θ̄) − sin 2θ]

−q[cos 2(θ + θ̄) − cos 2θ]
]

dθ̄dθ, (30)

where

Z =

∫ π

2

−
π

2

∫ π

0

exp

[

−Pe
2
θ̄ +

Pe

4
cos 2α[sin 2(θ + θ̄) − sin 2θ]

−q[cos 2(θ + θ̄) − cos 2θ]
]

dθ̄dθ.

For positive and large q, the dominant contribution in the above two integrals
comes from a small region near θ = 0 and θ̄ = π

2 . Away from this small region, the
contribution is exponentially small.

In the inner integral with respect to θ̄, we make a change of variables θ̄new = θ+θ̄.
For simplicity, we still use θ̄ to denote the new variable θ̄new. Since the dominant
contribution comes from a small region near θ = 0 and θ̄ = π

2 , we can extend the
integration limits away from the region of the dominant contribution. Specifically,
we rewrite (30) as
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F1(α, q, Pe)

=
1

Z

∫ π

2

−
π

2

sin 2θ exp[
Pe

2
θ − Pe

4
cos 2α sin 2θ + q cos 2θ]

×
∫ π

0

exp

[

−Pe
2

(θ + θ̄) +
Pe

4
cos 2α sin 2(θ + θ̄) − q cos 2(θ + θ̄)

]

dθ̄dθ

=
1

Z

∫ π

2

−
π

2

sin 2θ exp[
Pe

2
θ − Pe

4
cos 2α sin 2θ + q cos 2θ]

×
∫ θ+π

θ

exp

[

−Pe
2
θ̄ +

Pe

4
cos 2α sin 2θ̄ − q cos 2θ̄

]

dθ̄dθ + T.S.T.

=
1

Z

∫ π

2

−
π

2

sin 2θ exp[
Pe

2
θ − Pe

4
cos 2α sin 2θ + q cos 2θ]

×
∫ π

0

exp

[

−Pe
2
θ̄ +

Pe

4
cos 2α sin 2θ̄ − q cos 2θ̄

]

dθ̄dθ

+T.S.T. (31)

Here T.S.T. stands for transcendentally small term. Let

C1 =

∫ π

0

exp

[

−Pe
2
θ̄ +

Pe

4
cos 2α sin 2θ̄ − q cos 2θ̄

]

dθ̄. (32)

We have

F1(α, q, Pe) =
C1

Z

∫ π

2

−
π

2

sin 2θ exp[
Pe

2
θ − Pe

4
cos 2α sin 2θ + q cos 2θ] + T.S.T.

=
2C1

Z

∫ π

2

0

sin 2θ sinh

(

Pe

2
θ − Pe

4
cos 2α sin 2θ

)

exp(q cos 2θ)

+T.S.T. (33)

We apply the Laplace method to the integral in (33). The dominant contribution
comes from a small region near θ = 0. To proceed, we need to find the leading term
expansion of the part not containing q around θ = 0. We discuss two cases.
Case 1A: cos 2α < 1

In this case, we have

sin 2θ sinh

(

Pe

2
θ − Pe

4
cos 2α sin 2θ

)

= Pe(1 − cos 2α)θ2 + · · · ,

and

F1(α, q, Pe) =
2C1

Z

∫ π

2

0

Pe(1 − cos 2α)θ2 exp

[

q(1 − (2θ)2

2
)

]

dθ + · · ·

=
2C1

Z
exp(q)Pe(1 − cos 2α)

∫

∞

0

θ2 exp[−2qθ2]dθ + · · ·
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Introducing a change of variables

s = θ2, dθ =
1

2θ
ds =

1

2
√
s
ds,

we find

F1(α, q, Pe) =
C1

Z
exp(q)Pe(1 − cos 2α)

∫

∞

0

√
s exp[−2qs]ds+ · · ·

=
C1

Z
exp(q)Pe(1 − cos 2α)

1
2

√
π

2q
√

2q
+ · · · . (34)

Similarly, we get

Z = 2C1

∫ π

2

0

cosh(
Pe

2
θ − Pe

4
cos 2α sin 2θ) exp(q cos 2θ)dθ + T.S.T.

= 2C1 exp(q)

∫

∞

0

exp(−2qθ2)dθ + · · ·

= C1 exp(q)

√
π√
2q

+ · · · . (35)

Substituting (35) into (34) yields

F1(α, q, Pe) = Pe(1 − cos 2α)
1

4q
+ · · · > 0, as q → +∞.

Case 1B: cos 2α = 1
When cos 2α = 1, we have

sin 2θ sinh(
Pe

2
θ − Pe

4
cos 2α sin 2θ) =

2Pe

3
θ4 + · · ·

and it follows that

F1(α, q, Pe) =
2C1

Z
exp(q)

2Pe

3

∫

∞

0

θ4 exp(−2qθ2)dθ + · · ·

=
C1

Z
exp(q)

2Pe

3

∫

∞

0

s
√
s exp(−2qs)ds+ · · ·

=
C1

Z
exp(q)

2Pe

3

3
4

√
π

(2q)2
√

2q
+ · · · (36)

Combining (35) and (36), we obtain

F1(α, q, Pe) =
Pe

8q2
+ · · · > 0, as q → +∞.

Case 2: q → −∞
This case is similar to Case 1 but simpler than it. The derivation is skipped. For

negatively large q, the asymptotic result is

F1(α, q, Pe) = Pe(1 + cos 2α)
1

4q
+ · · · < 0, as q → −∞,

where we use the fact that the coefficient (1 + cos 2α) is always positive for α ∈
[−π

4 ,
π

4 ].
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